Inducible expression of catalytically active type 1 serine/threonine protein phosphatase in a human carcinoma cell line

Cancer Cell Int. 2003 Jul 23;3(1):12. doi: 10.1186/1475-2867-3-12.

Abstract

BACKGROUND: One of the major cellular serine/threonine protein phosphatases is protein phosphatase type 1 (PP1). Studies employing many eukaryotic systems all point to a crucial role for PP1 activity in controlling cell cycle progression. One physiological substrate for PP1 appears to be the product of the retinoblastoma susceptibility gene (pRB), a demonstrated tumor suppressor. The growth suppressive activity of pRB is regulated by its phosphorylation state. Of critical importance is the question of the in vivo effect of PP1 activity on pRB and growth regulation. As a first step towards addressing this question, we developed an inducible PP1 expression system to investigate the regulation of PP1 activity. RESULTS: We have established a cell line for inducing protein expression of the type 1, alpha-isotype, serine/threonine protein phosphatase (PP1alpha). A plasmid encoding a fusion protein of the catalytic subunit of PP1alpha with a 6-histidine peptide (6His) and a peptide from hemagluttinin (HA) was transfected into the UMUC3 transitional cell carcinoma cell line, previously transfected with the reverse tetracycline transactivator plasmid pUHD172-1neo. A stable cell line designated LLWO2F was established by selection with hygromycin B. 6His-HA-PP1alpha protein appeared in cell lysates within two hours following addition of doxycycline to the culture medium. This protein localizes to the nucleus as does endogenous PP1alpha, and was shown to associate with PNUTS, a PP1-nuclear targeting subunit. Like endogenous PP1alpha, immunocomplexed 6His-HA-PP1alpha is active toward phosphorylase a and the product of the retinoblastoma susceptibility gene, pRB. When forcibly overexpressing 6His-HA-PP1alpha, there is a concomitant decrease in endogenous PP1alpha levels. CONCLUSIONS: These data suggest the existence of an autoregulatory mechanism by which PP1alpha protein levels and activity remain relatively constant. RT-PCR analyses of isolated polysome fractions support the notion that this putative autoregulatory mechanism is exerted, at least in part, at the translational level. Implications of these findings for the study of PP1alpha function in vivo are discussed.