Sepsis causes lymphopenia which is inversely correlated with patient survival. The role of apoptosis-specific immune-activation and activation-induced cell-death in sepsis is incompletely understood. Fifteen septic patients and 20 healthy controls were included. T-cell proliferation was measured by [3H]thymidine uptake. Apoptosis and cell phenotype were determined by FACS. sTNFR1, sCD95, interleukin-1beta converting enzyme (sICE), and interleukin (IL)-10 were measured by ELISA. PHA and CD3-driven T-cell proliferation were significantly decreased in septic patients. The percentages of CD3(+) and CD4(+) T cells and CD19(+) B cells were significantly reduced. Percent memory T-cells (CD45RO(+)) and cells undergoing apoptosis (CD95(+)/annexin-V(+)) were significantly increased in sepsis. Moreover, sCD95, sTNFRI, and ICE were significantly increased. Anti-CD3 antibody triggering induced a 56% increase of CD4 T-cell death in septic patients vs. 7.5% in controls relative to IgG. Serum level of IL-10, a Th2 cytokine, was enhanced. These findings strongly suggest that in septic patients Th1 T-cells are selectively susceptible to undergo apoptosis. This observation provides an additional pathophysiological concept in the genesis of Th2 dominance.