The structure of Pseudomonas P51 Cl-muconate lactonizing enzyme: co-evolution of structure and dynamics with the dehalogenation function

Protein Sci. 2003 Sep;12(9):1855-64. doi: 10.1110/ps.0388503.

Abstract

Bacterial muconate lactonizing enzymes (MLEs) catalyze the conversion of cis,cis-muconate as a part of the beta-ketoadipate pathway, and some MLEs are also able to dehalogenate chlorinated muconates (Cl-MLEs). The basis for the Cl-MLEs dehalogenating activity is still unclear. To further elucidate the differences between MLEs and Cl-MLEs, we have solved the structure of Pseudomonas P51 Cl-MLE at 1.95 A resolution. Comparison of Pseudomonas MLE and Cl-MLE structures reveals the presence of a large cavity in the Cl-MLEs. The cavity may be related to conformational changes on substrate binding in Cl-MLEs, at Gly52. Site-directed mutagenesis on Pseudomonas MLE core positions to the equivalent Cl-MLE residues showed that the variant Thr52Gly was rather inactive, whereas the Thr52Gly-Phe103Ser variant had regained part of the activity. These residues form a hydrogen bond in the Cl-MLEs. The Cl-MLE structure, as a result of the Thr-to-Gly change, is more flexible than MLE: As a mobile loop closes over the active site, a conformational change at Gly52 is observed in Cl-MLEs. The loose packing and structural motions in Cl-MLE may be required for the rotation of the lactone ring in the active site necessary for the dehalogenating activity of Cl-MLEs. Furthermore, we also suggest that differences in the active site mobile loop sequence between MLEs and Cl-MLEs result in lower active site polarity in Cl-MLEs, possibly affecting catalysis. These changes could result in slower product release from Cl-MLEs and make it a better enzyme for dehalogenation of substrate.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Binding Sites
  • Catalysis
  • Crystallography, X-Ray
  • Halogens / chemistry
  • Hydrolases / metabolism
  • Intramolecular Lyases / chemistry*
  • Kinetics
  • Models, Chemical
  • Models, Molecular
  • Molecular Sequence Data
  • Mutagenesis
  • Protein Binding
  • Protein Conformation
  • Pseudomonas / enzymology*
  • Sequence Homology, Amino Acid
  • Structure-Activity Relationship

Substances

  • Halogens
  • Hydrolases
  • Intramolecular Lyases
  • muconate cycloisomerase

Associated data

  • PDB/1NU5