We present a novel de novo method to generate protein models from sparse, discretized restraints on the conformation of the main chain and side chain atoms. We focus on Calpha-trace generation, the problem of constructing an accurate and complete model from approximate knowledge of the positions of the Calpha atoms and, in some cases, the side chain centroids. Spatial restraints on the Calpha atoms and side chain centroids are supplemented by constraints on main chain geometry, phi/xi angles, rotameric side chain conformations, and inter-atomic separations derived from analyses of known protein structures. A novel conformational search algorithm, combining features of tree-search and genetic algorithms, generates models consistent with these restraints by propensity-weighted dihedral angle sampling. Models with ideal geometry, good phi/xi angles, and no inter-atomic overlaps are produced with 0.8 A main chain and, with side chain centroid restraints, 1.0 A all-atom root-mean-square deviation (RMSD) from the crystal structure over a diverse set of target proteins. The mean model derived from 50 independently generated models is closer to the crystal structure than any individual model, with 0.5 A main chain RMSD under only Calpha restraints and 0.7 A all-atom RMSD under both Calpha and centroid restraints. The method is insensitive to randomly distributed errors of up to 4 A in the Calpha restraints. The conformational search algorithm is efficient, with computational cost increasing linearly with protein size. Issues relating to decoy set generation, experimental structure determination, efficiency of conformational sampling, and homology modeling are discussed.