Temperature and pressure study of Brillouin transverse modes in the organic glass-forming liquid orthoterphenyl

Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Jul;68(1 Pt 1):011204. doi: 10.1103/PhysRevE.68.011204. Epub 2003 Jul 15.

Abstract

Transverse Brillouin spectra of orthoterphenyl are measured in the (250-305 K; 0.1-100 MPa) temperature-pressure range, which corresponds to the supercooled phase of this organic glass former. We show that the analysis of these spectra combined with an extrapolation of the reorientation times under pressure leads to an estimate of the static shear viscosity in a pressure range whose validity extends beyond the range of the Brillouin measurements. The relative contributions of temperature and of density to the change of this reorientation time measured along an isobar are extracted from our results in a large temperature range extending from the liquid to the low temperature supercooled state. They appear to be always of the same order of magnitude. It is also shown that in the range of the experiment, the orientational time is depending on a unique parameter built on temperature and density.