Collagenous transmembrane proteins are an emerging group of biologically versatile molecules which function as both cell surface receptors and matrix molecules. The seven group members have interesting structural similarities: they are integral membrane proteins in type II orientation and have one or more collagenous domains in the extracellular C-terminus; interspersed by non-collagenous stretches which confer structural flexibility to the ectodomain. A conserved coiled-coil sequence (linker domain) immediately adjacent to the extracellular face of the cell membrane presumably serves as a nucleus for trimerization and triple-helix folding of each collagen. Intriguingly, the ectodomains of at least some of these molecules are proteolytically shed from the cell surface, releasing a shorter form of the collagen into the extracellular matrix. Collagenous transmembrane proteins are expressed in many different tissues and cells, and are involved in a broad spectrum of biological functions, reaching from epithelial and neural cell adhesion, and epithelial-mesenchymal interactions during morphogenesis to host defense against microbial agents. Several group members are involved in the molecular pathology of genetic and acquired human diseases including epidermolysis bullosa, ectodermal dysplasia, bullous pemphigoid or Alzheimer disease. An extensively investigated member is collagen XVII, a keratinocyte surface protein, which attaches the epidermis to the basement membrane in the skin. In this review, the structure and functions of the currently known collagenous transmembrane proteins are summarized and, as a 'prototype' of the group, collagen XVII and its biology and pathophysiology are delineated.