A metastatic renal cell carcinoma (RCC) tumor model xenograft that expresses the targetable, membrane-bound tumor-associated antigen carbonic anhydrase type 9 (CA IX) is described. The xenograft, established from a high-grade type-2 chromophil RCC (cRCC), has been serially transplanted in immune compromised mice, in which it grows orthotopically under the renal capsule, doubling its size every 9 weeks and sending metastases to the lung and liver at approximately 20 weeks. Tumors were capable of being imaged using a micro-PET (micro-positron emission tomograph) with an 18-fluorodeoxyglucose (18-FDG) tracer. Subsequent xenograft generations have conserved immunohistochemical and ultrastructural properties typical for malignant renal epithelium-derived neoplasia (vimentin+, CK-19+, CA IX+ with hypoxia-inducible factor (HIF)-1 alpha constitutive expression) and have demonstrated extensive proliferation, lack of apoptosis, severe genetic alterations, and molecular expression alterations; transforming growth factor beta 1 (TGF-beta 1), hepatocyte growth factor (HGF), proto-oncogene (c-met), matrix metalloproteinase (MMP)-1, and vascular endothelial growth factor (VEGF) C and D were overexpressed, whereas human epidermal growth factor receptor (HER)-2, MMP-2 and MMP-9, VEGF-R3, p53, and p27 were severely down-regulated, suggesting a proangiogenic environment, local invasiveness, and facilitated lymphatic metastasis. Altogether, LABAZ1 provides a relevant and flexible model to study the biology of cRCC, the role of CA IX in RCC tumorigenesis, progression, and metastasis, and a platform for testing new targeted therapeutic strategies.