High-resolution MR imaging of triangular fibrocartilage complex (TFCC): comparison of microscopy coils and a conventional small surface coil

Skeletal Radiol. 2003 Oct;32(10):575-81. doi: 10.1007/s00256-003-0672-7. Epub 2003 Aug 27.

Abstract

Objective: To compare MR images of the triangular fibrocartilage complex (TFCC) using microscopy coils with those using a conventional surface coil qualitatively and quantitatively.

Design and patients: Proton density-weighted images and T2*-weighted images of the TFCC from ten normal volunteers were obtained with a conventional surface coil (C4 coil; 80 mm in diameter), a 47-mm microscopy surface coil and a 23-mm microscopy surface coil) at 1.5 T. Qualitative image analysis of MR images with three coils was performed by two radiologists who assigned one of five numerical scores (0, nonvisualization; 1, poor; 2, average; 3, good; 4, excellent) for five TFCC components, which were disc proper, triangular ligament, meniscus homologue, ulnotriquetral and ulnolunate ligament. Quantitative analysis included the signal-to-noise ratio (S/N) of the disc proper of TFCC, the lunate cartilage, the lunate bone and the contrast-noise-ratio (C/N) between articular cartilage and disc proper or bone marrow were measured.

Results: All structures show higher scores qualitatively on MR with microscopy coils than those with a C4 coil, and the difference was significant with the exception of the ulnolunate ligament. MR with microscopy coils showed significantly higher S/N values than those with a conventional surface coil (P<0.05 to P<0.001). T2*-weighted images using microscopy coils showed significantly higher cartilage-disc proper C/N and cartilage-bone marrow C/N (P<0.01 to P<0.001). On proton density-weighted images, the C/N between cartilage and disc proper with two microscopy coils was significantly higher (P<0.01) than that with a conventional coil.

Conclusion: High-resolution MR images of the normal wrist using microscopy coils were superior to those using a conventional surface coil qualitatively and quantitatively. High-resolution MR imaging with a microscopy coil would be a promising method to diagnose TFCC lesions.

Publication types

  • Comparative Study
  • Evaluation Study

MeSH terms

  • Adult
  • Cartilage, Articular / pathology*
  • Female
  • Humans
  • Image Enhancement / instrumentation*
  • Magnetic Resonance Imaging / instrumentation*
  • Male
  • Microscopy / instrumentation
  • Reference Values
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Wrist Joint / pathology*