For isotope ratio applications where an internal isotope ratio precision >0.05-0.1% relative standard deviation suffices, single-collector inductively coupled plasma mass spectrometry (ICPMS) is fit-for-purpose, but for detecting more subtle variations in the natural isotopic composition of a target element, only multi-collector ICPMS (MC-ICPMS) can compete with thermal ionization mass spectrometry (TIMS). While as a result of the extensive sample preparation (analyte isolation) preceding TIMS and the "softer" ionization in vacuum, spectral interferences only seldom occur with this technique, their occurrence is recognized to be the most important drawback of ICPMS. This paper discusses high mass resolution and chemical resolution in a collision or dynamic reaction cell as powerful and versatile means to overcome spectral overlap and illustrates how their introduction has led to a substantial extension of the application range of ICPMS for isotope ratio applications. High mass resolution is the most elegant and straightforward way to overcome the problem of spectral overlap. Offering the possibility to operate the mass analyzer at a higher mass resolution, while at the same time preserving the flat-topped or trapezoidal peak shape required for highly precise isotope ratio measurements, was a challenge for the manufacturers of MC-ICPMS instrumentation. It will be discussed how these apparently contradicting requirements could be fulfilled simultaneously and an overview of the current situation will be given. Chemical resolution in a collision or dynamic reaction cell is an alternative to high mass resolution for overcoming spectral overlap. Real-life examples will be given to illustrate how also this approach can be used to advantage in isotope ratio work. Despite the greater flexibility and straightforwardness of high mass resolution, some situations will be discussed where chemical resolution is to be preferred. Finally, some desires as to future instrumentation are formulated.