Intracellular transport of calcium from plasma membrane to mitochondria in adrenal H295R cells: implication for steroidogenesis

Endocrinology. 2003 Oct;144(10):4575-85. doi: 10.1210/en.2003-0268. Epub 2003 Jul 10.

Abstract

Angiotensin II and extracellular potassium stimulate aldosterone production in adrenal glomerulosa cells by mobilizing the calcium messenger system. This response requires calcium influx across the plasma membrane, followed by calcium uptake into the mitochondria. It has been proposed that calcium is transported to the mitochondria via the lumen of the endoplasmic reticulum, acting as a kind of intracellular calcium pipeline. This hypothesis has been tested in the present study by measuring intramitochondrial calcium variations in H295R cells with a new fluorescent calcium probe, ratiometric pericam. Calyculin A, a protein phosphatase inhibitor, induced the formation of a large cortical layer of actin filaments, removing the peripheral endoplasmic reticulum away from the plasma membrane and thereby physically uncoupling the calcium channels from the pipeline. The mitochondrial calcium response to potassium was markedly reduced after calyculin treatment, but that of AngII was unaffected. Under the same conditions, potassium-stimulated pregnenolone and aldosterone production was significantly reduced, whereas the steroidogenic response to AngII remained unchanged. The inhibitory action of calyculin A on the responses to potassium was not mediated by a modification of the calcium channel activity and was not accompanied by a reduction of the cytosolic calcium response. It therefore appears that, in H295R cells, the organization of the actin cytoskeleton at the cell periphery influences the steroidogenic action of potassium, but not the response to angiotensin II. The response to potassium is proposed to be dependent on the endoplasmic reticulum-mediated transfer of calcium entering through plasma membrane calcium channels to the mitochondria.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Actins / metabolism
  • Adrenal Glands / cytology
  • Adrenal Glands / metabolism*
  • Angiotensin II / pharmacology
  • Biological Transport
  • Calcium / metabolism*
  • Calcium Channels / drug effects
  • Calcium Channels / physiology
  • Cell Line
  • Cell Membrane / metabolism
  • Cytosol / metabolism
  • Electrophysiology
  • Humans
  • Intracellular Membranes / metabolism*
  • Marine Toxins
  • Mitochondria / drug effects
  • Mitochondria / metabolism*
  • Oxazoles / pharmacology
  • Potassium / pharmacology
  • Potassium Chloride / pharmacology
  • Steroids / antagonists & inhibitors
  • Steroids / biosynthesis
  • Tissue Distribution

Substances

  • Actins
  • Calcium Channels
  • Marine Toxins
  • Oxazoles
  • Steroids
  • Angiotensin II
  • Potassium Chloride
  • calyculin A
  • Potassium
  • Calcium