In the past decade, regenerative medicine has evolved as an interdisciplinary field, integrating expertise from the medical, life- and material-science communities. Recent advances in tissue engineering, gene therapy, gene-function analysis, animal-free drug testing, drug discovery, biopharmaceutical manufacturing and cell-phenotype engineering have capitalized on a core technology portfolio including artificial microtissue design, viral transduction and precise transcription dosing of therapeutic or phenotype-modulating transgenes. We provide a detailed overview on recent progress in these core technologies and comment on their synergistic impact on current and future human therapies.