Cell lines selected in multiple steps for increasing resistance to hydroxyurea have been shown to have corresponding increases in ribonucleotide reductase activity. We have isolated a number of cDNA clones from a cDNA library constructed from a highly hydroxyurea-resistant hamster cell line, 600H, in which the activity of ribonucleotide reductase is elevated more than 80-fold. These clones correspond to genomic DNA sequences amplified in the 600H cell line compared with the V79 parental line. One of these cDNA clones, termed P5, codes for a 50 kDa protein detected by in vitro translation of poly(A)+ RNA isolated by hybridization/selection. The cDNA sequence contains a single open reading frame of 1317 nucleotides which encodes a polypeptide of 439 amino acids. The amino acid sequence deduced from the cDNA insert contains two copies of the 11-amino-acid sequence Val-Glu-Phe-Tyr-Ala-Pro-Trp-Cys-Gly-His-Cys. Duplicate copies of this sequence also occur in the active site of rat and human protein disulphide isomerase (also known as the beta-subunit of human prolyl 4-hydroxylase, tri-iodothyronine-binding protein) and in Form I phosphoinositide-specific phospholipase C, indicating that P5 falls into this newly defined superfamily of proteins. Genomic sequences similar to the cDNA clone are amplified 10-20-fold in hamster cells selected for resistance to increasing concentrations of hydroxyurea, a phenomenon observed earlier with cDNA clones for the M2 subunit of ribonucleotide reductase and ornithine decarboxylase. RNA blots probed with P5 cDNA show two poly(A)+ RNA species which are elevated in hydroxyurea-resistant cells.