Modulation by betaine of cellular responses to osmotic stress

Biochem J. 1992 Feb 15;282 ( Pt 1)(Pt 1):69-73. doi: 10.1042/bj2820069.

Abstract

Various solutes were tested to see if they could modify the responses of SV-3T3 cells to hyperosmotic (0.5 osM) conditions, which cause an inhibition of general cell protein synthesis and of the rate of cell proliferation, coupled with an induction of amino acid transport activity. The added solutes were glycerol, proline, taurine, betaine, dimethylglycine and sarcosine. Of these, betaine produced the most dramatic and consistent effects. Addition of 10-25 mM-betaine to the hyperosmotic medium largely prevented the 90% inhibition of cell proliferation that occurred in its absence. Whether it was added initially or after the cells were exposed to hyperosmotic medium, 25 mM-betaine also converted a 50% recovery of the rate of protein synthesis into 100%. Similarly, the same concentrations of betaine prevented a 30% decrease in cell volume and decreased the induction of amino acid transport via system A by 73%. Lower concentrations of betaine produced smaller but still significant changes in these functional responses. With chick-embryo fibroblasts, under identical hyperosmotic conditions, 25 mM-betaine completely counteracted a 75% inhibition of the rate of protein synthesis. At present it is not clear how betaine modulates these effects of hyperosmolarity on cell functions.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 3T3 Cells
  • Animals
  • Betaine / metabolism
  • Betaine / pharmacology*
  • Biological Transport / drug effects
  • Cell Division / drug effects*
  • Cell Line, Transformed
  • Glycerol / metabolism
  • Hypertonic Solutions
  • Kinetics
  • Mice
  • Osmolar Concentration
  • Proline / metabolism
  • Protein Biosynthesis*
  • Simian virus 40 / genetics
  • Taurine / metabolism

Substances

  • Hypertonic Solutions
  • Taurine
  • Betaine
  • Proline
  • Glycerol