A novel transposon mutagenesis system for the phytopathogenic bacteria Xanthomonas oryzae pv. oryzae (Xoo) and X. campestris pv. campestris (Xcc) was developed using a Tn5-based transposome. A highly efficient transformation up to 10(6) transformants per microg transposon DNA was obtained. Southern blot and thermal asymmetric interlaced polymerase chain reaction analyses of Tn5 insertion sites suggested a random mode of transposition. The transposition was stable in the transformants for 20 subcultures. Eighteen thousand and 17000 transformants for Xoo and Xcc, respectively, were generated, corresponding to 4X ORF coverage of the genomes. The libraries will facilitate the identification of pathogenicity-related genes as well as functional genomic analysis in Xoo and Xcc.