In vitro activation of distinct molecular and cellular phenotypes after induction of differentiation in a human neuroblastoma cell line

Cancer Res. 1992 Aug 15;52(16):4402-7.

Abstract

In this report we provide evidence for the activation of distinct differentiation pathways during treatment of the neuroblastoma cell line SMS-KCNR with 1 mM dibutyryl cyclic AMP (dbcAMP) and/or 5 microM retinoic acid (RA). Our results show that the adrenal gland specific gene pG2 is induced only during dbcAMP treatment, while RA induces a neuronal phenotype and expression of all neural related genes while decreasing the expression of many chromaffin related genes. Furthermore dbcAMP does not affect the DNA content distribution of SMS-KCNR [G1 = 61.8 +/- 4.1% (SD); S = 20.3 +/- 6.3%; G2-M = 18 +/- 5.4%] despite morphological and molecular signs of cellular differentiation. Conversely, RA arrests cell growth causing a decrease in cells in the growth fraction (S + G2 + M = 15.6 +/- 6.1%) and an increase in cells in G1 (G1 = 84.3 +/- 5%). Using cyclic AMP and RA in combination, we found that RA inhibited expression of adrenal gland specific gene pG2 and induced a neuronal phenotype. Since dbcAMP does not cause a significant G1 block in SMS-KCNR cells we propose that this agent may be able to induce SMS-KCNR only to an intermediate stage of chromaffin differentiation in which cells retain their proliferative potential.

MeSH terms

  • Bucladesine / pharmacology
  • Cell Differentiation / drug effects
  • Cell Differentiation / genetics*
  • G1 Phase / drug effects
  • Gene Expression Regulation, Neoplastic / drug effects*
  • Gene Expression Regulation, Neoplastic / genetics
  • Genes, Retinoblastoma / drug effects*
  • Genes, Retinoblastoma / genetics
  • Genetic Markers
  • Humans
  • Neuroblastoma / genetics*
  • Neuroblastoma / pathology
  • Phenotype
  • RNA, Messenger / metabolism
  • RNA, Neoplasm / metabolism
  • S Phase / drug effects
  • Time Factors
  • Transcription, Genetic
  • Tretinoin / pharmacology
  • Tumor Cells, Cultured
  • Vasoactive Intestinal Peptide / pharmacology

Substances

  • Genetic Markers
  • RNA, Messenger
  • RNA, Neoplasm
  • Vasoactive Intestinal Peptide
  • Tretinoin
  • Bucladesine