A pertussis toxin-sensitive mechanism of endothelin action in porcine coronary artery smooth muscle

Br J Pharmacol. 1992 Oct;107(2):456-62. doi: 10.1111/j.1476-5381.1992.tb12767.x.

Abstract

1. Endothelin-1 (ET-1)-induced contraction of porcine coronary artery strips may be mediated via at least two intracellular signalling mechanisms, the activation of dihydropyridine-sensitive voltage-dependent Ca2+ channels and the stimulation of phosphoinositide breakdown. Here we have investigated the possible involvement of pertussis toxin (PT)-sensitive guanosine-5'-triphosphate (GTP)-binding proteins (G-proteins) in ET-1-induced activation of these two signalling pathways in porcine coronary artery smooth muscle. 2. Increase in extracellular K+ concentration (10, 15 mM) shifted the dose-response relationship for the ET-1-induced contraction to the left. 3. The dihydropyridine Ca2+ channel blocker, nifedipine (10(-8) M), induced a rightward shift in the dose-response curve for ET-1. Pretreatment of the arterial strips with PT (0.1 microgram ml-1) induced a similar rightward shift of the ET-1 dose-response curve but not of the KCl response. Nifedipine (10(-8) M) did not further attenuate the ET-1-induced contraction in the PT-pretreated strips. 4. The pretreatment with PT significantly reduced 45Ca2+ uptake of the arterial strips stimulated by ET-1, but had no effect on ET-1-induced production of inositol phosphates. 5. The contractile response of the arterial strips to phorbol dibutyrate, an active phorbol ester, was not significantly affected by 10(-8) M nifedipine. 6. We confirmed that the pretreatment of the tissue with PT induced ADP-ribosylation of a 41 kDa membrane protein. 7. These findings indicate that activation of dihydropyridine-sensitive voltage-dependent Ca2+ channels by ET-1 in this tissue is mediated via a PT-sensitive G-protein in a manner apparently independent of the ET-1-induced activation of protein kinase C. It is concluded that the action of ET-1 in porcine coronary artery is mediated via two distinct signal transduction pathways, which are coupled to PT-sensitive and PT-insensitive GTP-binding proteins, respectively.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenosine Diphosphate Ribose / metabolism
  • Animals
  • Arteries / drug effects
  • Calcium / metabolism
  • Calcium Channels / drug effects
  • Coronary Vessels / drug effects*
  • Coronary Vessels / physiology
  • Dose-Response Relationship, Drug
  • Endothelins / pharmacology*
  • GTP-Binding Proteins / physiology*
  • In Vitro Techniques
  • Inositol Phosphates / metabolism
  • Muscle Contraction / drug effects
  • Muscle, Smooth, Vascular / drug effects*
  • Muscle, Smooth, Vascular / physiology
  • Nifedipine / pharmacology
  • Pertussis Toxin*
  • Phorbol 12,13-Dibutyrate / pharmacology
  • Swine
  • Virulence Factors, Bordetella / pharmacology*

Substances

  • Calcium Channels
  • Endothelins
  • Inositol Phosphates
  • Virulence Factors, Bordetella
  • Adenosine Diphosphate Ribose
  • Phorbol 12,13-Dibutyrate
  • Pertussis Toxin
  • GTP-Binding Proteins
  • Nifedipine
  • Calcium