We isolated and characterized two flower-specific genes from petunia. The protein products of these genes, designated floral binding protein 1 (FBP1) and 2 (FBP2), are putative transcription factors with the MADS box DNA binding domain. RNA gel blot analysis showed that the fbp1 gene is exclusively expressed in petals and stamen of petunia flowers. In contrast, the FBP1 protein was only detectable in petals and not in stamens, suggesting post-transcriptional regulation of the fbp1 gene in these tissues. The fbp2 gene is expressed in petals, stamen, carpels, and at a very low level in sepals but not in vegetative tissues. We analyzed the spatial expression of these fbp genes in floral organs of two homeotic flower mutants. In the blind mutant, whose flower limbs are transformed into antheroid structures on top of normal tubes, identical expression levels of both genes were observed in the antheroid structures as in normal anthers. In the homeotic mutant green petals, the petals are replaced by sepaloid organs in which the expression of fbp1 is strongly reduced but not completely abolished. Our results suggest a regulation of the fbp1 gene expression by the green petals (gp) gene. Expression of the fbp2 gene was not affected in the green petals mutant. In contrast to the proposed models describing floral morphogenesis, our data indicated that homeotic genes can be functional in one whorl only.