Pili confer the initial ability of Neisseria gonorrhoeae to bind to epithelial cells. Pilin (PilE), the major pilus subunit, and a minor protein termed PilC, reportedly essential for pilus biogenesis, undergo intra-strain phase and structural variation. We demonstrate here that at least two different adherence properties are associated with the gonococcal pili: one is specific for erythrocytes, which is virtually unaffected by PilE variation, and another is specific for epithelial cells, and is modulated in response to the variation of PilE. Based on this finding, mutants of a recA- strain were selected that had lost the ability to bind to human cornea epithelial cells (A-) but retained the ability to form pili (P+) and to agglutinate human erythrocytes (H+). The adherence-negative mutants failed to produce detectable levels of PilC1 or PilC2 proteins, representing piIC phase variants generated in the absence of RecA. The A- pilC phase variants were indistinguishable from their A+ parents and spontaneous A+ revertants with regard to the amount of PilE produced and its electrophoretic mobility, the degrees of piliation and haemagglutination, and the pilE nucleotide sequence. These data demonstrate a central role for PilC in pilus-mediated adherence of N. gonorrhoeae to human epithelial cells and further indicate that neither PilC1 nor PilC2 is obligatory for the assembly of gonococcal pili.