Two distinct GAPs of 120 and 235 kDa called GAP1 and NF1 serve as attenuators of Ras, a member of GTP-dependent signal transducers, by stimulating its intrinsic guanosine triphosphatase (GTPase) activity. The GAP1 (also called Ras GAP) is highly specific for Ras and does not stimulate the intrinsic GTPase activity of Rap1 or Rho. Using GAP1C, the C-terminal GTPase activating domain (residues 720-1044) of bovine GAP1, we have shown previously that the GAP1 specificity is determined by the Ras domain (residues 61-65) where Gln61 plays the primary role. The corresponding domain (residues 1175-1531) of human NF1 (called NF1C), which shares only 26% sequence identity with the GAP1C, also activates Ras GTPases. In this article, we demonstrate that the NF1C, like the GAP1C, is highly specific for Ras and does not activate either Rap1 or Rho GTPases. Furthermore, using a series of chimeric Ras/Rap1 and mutated Ras GTPases, we show that Gln at position 61 of the GTPases primarily determines that NF1C as well as GAP1C activates Ras GTPases, but not Rap1 GTPases, and Glu at position 63 of the GTPases is required for maximizing the sensitivity of Ras GTPases to both NF1C and GAP1C. Interestingly, replacement of Glu63 of c-HaRas by Lys reduces its intrinsic GTPase activity and abolishes the GTPase activation by both NF1C and GAP1C. Thus, the potentiation of oncogenicity by Lys63 mutation of c-HaRas appears primarily to be due to the loss of its sensitivity to the two major Ras signal attenuators (NF1 and GAP1).