Ag85B (also known as alpha antigen or MPT59) is immunogenic, and induces expansion and differentiation of TCRVbeta11(+)CD4(+) T cells to IFN-gamma-producing cells in C57BL/6 (I-A(b)) mice. We reported that Peptide-25 (amino acids 240-254) of Ag85B is a major T cell epitope, and its amino acid residues at position 244, 247, 249 and 252 are I-A(b) contact residues. Here we examined roles of IFN-gamma in the generation of Peptide-25-reactive CD4(+) TCRVbeta11(+) T cells and the efficacy of mutant peptides of Peptide-25 for T(h)1 development in mice other than C57BL/6 mice. Immunization of C57BL/6 mice with Peptide-25 included in incomplete Freund's adjuvant led to preferential induction of CD4(+) TCRVbeta11(+) IFN-gamma- and tumor necrosis factor-alpha-producing T cells. Compared with other I-A(b)-binding peptides such as Peptide-9 of Ag85B, 50V of pigeon cytochrome c and ovalbumin (OVA)(265-280) peptide, only Peptide-25 was capable of inducing enormous expansion of TCRVbeta11(+) IFN-gamma-producing T cells. Treatment of C57BL/6 mice with anti-Vbeta11 antibody before Peptide-25 immunization reduced the development of CD4(+) IFN-gamma-producing T cells. Furthermore, B10.A(3R) mice, I-A(b)-positive and TCRVbeta11(-) strain, showed remarkably lower response to Peptide-25 immunization than C57BL/6 mice. Peptide-25-primed IFN-gamma(-/-) cells showed significantly decreased expansion of CD4(+) TCRVbeta11(+) T cells as compared with wild-type cells. Interestingly, Peptide-25-primed cells from MyD88-deficient mice responded to Peptide-25 and differentiated into IFN-gamma-producing cells to a similar extent as wild-type mice, indicating Toll-like receptor-independent IFN-gamma production. These results imply that IFN-gamma plays important roles for the generation and expansion of CD4(+) TCRVbeta11(+) T cells in response to Peptide-25. Although Peptide-25 was non-immunogenic in C3H/HeN mice, a substituted mutant of Peptide-25, 244D247V, capable of binding to I-A(k), induced T(h)1 development. These results clearly demonstrate important roles of IFN-gamma in the expansion of CD4(+) TCRVbeta11(+) T cells, and will provide useful information for delineating the regulatory mechanisms of T(h)1-cell development and for analyzing mechanisms on T(h)1-dominant immune responses.