Tau (tau) is a major constituent of paired helical filaments (PHF) found in Alzheimer's disease. The current study examines the possibility that the distinct properties of PHF-associated tau proteins (tau PHF) result from post-translational modifications of normal soluble tau (tau s). Following hydrofluoric acid (HF) treatment, tau PHF proteins are heat- and acid-stable, soluble in 2-(N-morpholino)ethanesulfonic acid buffers and display the same molecular weight, pI, and immunochemical properties as normal tau s. Alkaline phosphatase treatment of dissociated PHF results in similar, although less extensive, electrophoretic changes and a reduction in PHF-1 immunoreactivity. Therefore, phosphorylation of normal tau s appears to be responsible for the distinct properties of tau PHF. Although our results suggest that all of the normal tau isoforms are in PHF, the relative abundance of individual tau species differs in HF-treated PHF and tau s samples. Moreover, the loss of PHF following HF treatment suggests that post-translational modifications contribute to the structural stability of PHF.