Type I allergy is a major health problem in industrialized countries where up to 15% of the population suffer from allergic symptoms (rhinitis, conjunctivitis, and asthma). Previously, we identified a cDNA clone that encoded a birch pollen allergen as profilin. Profilins constitute a ubiquitous family of proteins that control actin polymerization in eukaryotic cells; in particular, profilin participates in the acrosomal reaction of animal sperm cells. Although profilins had been unknown in plants so far, our finding led to the assumption that profilins might have similar functions in pollens during plant fertilization and therefore represent allergenic components in almost all pollens. We show that profilins are prominent allergens that can be isolated from tree pollens (Betula verrucosa, birch), from pollens of grasses (Phleum pratense, timothy grass), and weeds (Artemisia vulgaris, mugwort). About 20% of all pollen allergic patients tested (n = 65) displayed immunoglobulin E (IgE) reactivity to recombinant birch profilin that was expressed in pKK223-3. An IgE inhibition experiment performed with recombinant birch profilin and purified natural profilins from timothy grass and mugwort indicates common IgE epitopes. Moreover, all pollen profilins purified from these far distantly related plant species, and likewise the purified recombinant birch profilin, are able to elicit dose-dependent histamine release via high affinity Fc epsilon receptor of blood basophils from profilin allergic patients. The presence of profilin and possibly related proteins as crossreacting allergenic components in various plants therefore provides an explanation as to why certain allergic patients display type I allergic reactions with pollens and even food from distantly related plants. A functional pan-allergen, like profilin, available as purified recombinant protein, may be a useful diagnostic and probably therapeutic reagent.