The endogenous inhibitory role of the neuropeptide galanin in pain transmission and spinal cord excitability was demonstrated by the use of a high-affinity galanin receptor antagonist, M-35 [galanin-(1-13)-bradykinin-(2-9)-amide]. M-35, which displaced 125I-labeled galanin from membranes of rat dorsal spinal cord with an IC50 of 0.3 nM, dose-dependently antagonized the effect of intrathecal galanin on the flexor reflex. M-35 potentiated the facilitation of the flexor reflex by conditioning stimulation of cutaneous unmyelinated afferents in rats with intact nerves and the potentiating effect of M-35 on the conditioning-stimulation-induced reflex facilitation of the cutaneous unmyelinated afferents was strongly enhanced after axotomy. These results demonstrate that endogenous galanin plays a tonic inhibitory role in the mediation of spinal cord excitability, and it is particularly noteworthy that this function of galanin is remarkably enhanced after peripheral nerve section.