Genetic determination of exocrine pancreatic function in cystic fibrosis

Am J Hum Genet. 1992 Jun;50(6):1178-84.

Abstract

We showed elsewhere that the pancreatic function status of cystic fibrosis (CF) patients could be correlated to mutations in the CF transmembrane conductance regulator (CFTR) gene. Although the majority of CF mutations--including the most common, delta F508--strongly correlated with pancreatic insufficiency (PI), approximately 10% of the mutant alleles may confer pancreatic sufficiency (PS). To extend this observation, genomic DNA of 538 CF patients with well-documented pancreatic function status were analyzed for a series of known mutations in their CFTR genes. Only 20 of the 25 mutations tested were found in this population. They accounted for 84% of the CF chromosomes, with delta F508 being the most frequent (71%), and the other mutations accounted for less than 5% each. A total of 30 different, complete genotypes could be determined in 394 (73%) of the patients. The data showed that each genotype was associated only with PI or only with PS, but not with both. This result is thus consistent with the hypothesis that PI and PS in CF are predisposed by the genotype at the CFTR locus; the PS phenotype occurs in patients who have one or two mild CFTR mutations, such as R117H, R334W, R347P, A455E, and P574H, whereas the PI phenotype occurs in patients with two severe alleles, such as delta F508, delta I507, Q493X, G542X, R553X, W1282X, 621 + 1G----T, 1717-1G----A, 556delA, 3659delC, I148T, G480C, V520F, G551D, and R560T.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Alleles
  • Amino Acid Sequence
  • Child
  • Chromosome Deletion
  • Chromosome Mapping
  • Codon / genetics
  • Cystic Fibrosis / genetics*
  • Cystic Fibrosis / physiopathology*
  • Cystic Fibrosis Transmembrane Conductance Regulator
  • DNA / genetics
  • Exons
  • Frameshift Mutation
  • Genotype
  • Humans
  • Introns
  • Membrane Proteins / genetics*
  • Mutation*
  • Pancreas / physiopathology*

Substances

  • CFTR protein, human
  • Codon
  • Membrane Proteins
  • Cystic Fibrosis Transmembrane Conductance Regulator
  • DNA