Two novel subunits of the mouse NMDA receptor channel, the epsilon 2 and epsilon 3 subunits, have been identified by cloning and expression of complementary DNAs. The heteromeric epsilon 1/zeta 1, epsilon 2/zeta 1 and epsilon 3/zeta 1 NMDA receptor channels exhibit distinct functional properties in affinities for agonists and sensitivities to competitive antagonists and Mg2+ block. In contrast to the wide distribution of the epsilon 1 and zeta 1 subunit messenger RNAs in the brain, the epsilon 2 subunit mRNA is expressed only in the forebrain and the epsilon 3 subunit mRNA is found predominantly in the cerebellum. The epsilon 1/zeta 1 and epsilon 2/zeta 1 channels expressed in Xenopus oocytes, but not the epsilon 3/zeta 1 channel, are activated by treatment with 12-O-tetradecanoylphorbol 13-acetate. These findings suggest that the molecular diversity of the epsilon subunit family underlies the functional heterogeneity of the NMDA receptor channel.