Fibroblast growth factor (FGF) receptor (FGFR) gene family consists of at least four receptor tyrosine kinases that transduce signals important in a variety of developmental and physiological processes related to cell growth and differentiation. Here we have characterized the binding of different FGFs to FGFR-4. Our results establish an FGF binding profile for FGFR-4 with aFGF having the highest affinity, followed by K-FGF/hst-1 and bFGF. In addition, FGF-6 was found to bind to FGFR-4 in ligand competition experiments. Interestingly, the FGFR-4 gene was found to encode only the prototype receptor in a region where both FGFR-1 and FGFR-2 show alternative splicing leading to differences in their ligand binding specificities and to secreted forms of these receptors. Ligands binding to FGFR-4 induced receptor autophosphorylation and phosphorylation of a set of cellular polypeptides, which differed from those phosphorylated in FGFR-1-expressing cells. Specifically, the FGFR-1-expressing cells showed a considerably more extensive tyrosine phosphorylation of PLC-gamma than the FGFR-4-expressing cells. Structural and functional specificity within the FGFR family exemplified by FGFR-4 may help to explain how FGFs perform their diverse functions.