We have analyzed the requirements for the induction of proliferative responses by thymic CD4-CD8- gamma delta T cells. Enriched populations of CD4-CD8- thymocytes from newborn mice, purified by negative selection with anti-CD4, anti-CD8, and anti-TCR alpha beta mAbs were found to contain approximately 20% gamma delta T cells that were p55IL-2R-. When these cells were cultured with a panel of lymphokines (IL-1, -2, -4, and -7), a small response was observed to some of the cytokines tested individually; however, combinations of certain lymphokines (IL-1 + 2, IL-1 + 7, and IL-2 + 7) were found to induce significant proliferation and the selective outgrowth (75-90%) of gamma delta T cells. These cells were IL-2R+, remained CD4-, yet expressed variable levels of CD8. A limited analysis with specific anti-V gamma and V delta mAb suggested that there had not been a selective expansion of preexisting V gamma 2, V gamma 3, or V delta 4 populations in response to the stimulatory lymphokine combinations. Thymic CD4-CD8- gamma delta T cells were unresponsive to stimulation with immobilized anti-pan gamma delta mAb alone. However, in the presence of immobilized anti-pan gamma delta mAb and IL-1, IL-2, or IL-7, but not IL-4, a vigorous proliferative response was observed. Phenotypic analysis showed that 80 to 95% of the proliferating cells were polyclonally expanded gamma delta T cells, expressed the p55IL-2R, and the majority remained CD4-CD8-. Blocking studies with anti-IL-2R mAb showed that stimulation with anti-pan gamma delta + IL-1, but not anti-pan gamma delta + IL-7 was dependent on endogenously produced IL-2. Collectively, these studies suggest that the activation requirements of newborn thymic gamma delta T cells differ markedly from alpha beta T cells in that gamma delta T cells 1) respond to combinations of cytokines in the absence of TCR cross-linking, 2) can respond to TCR cross-linking in the presence of exogenous cytokines, 3) but are unable to activate endogenous cytokine production solely in the presence of TCR cross-linking.