The IR-IGF1 production by rabbit epiphyseal chondrocytes cultured in serum-free medium was analyzed. Cell proliferation was induced by the addition of 10 ng/ml basic fibroblast growth factor (bFGF) without or with 100 ng/ml recombinant human growth hormone (hGH). GH alone induced no cell multiplication. Chondrocytes treated with bFGF alone secreted an IR-IGF1 activity proportional to the mitotic activity of the cells. A specific positive IGF1 immunostaining was localized in the Golgi of control and hGH-treated cells. The IR-IGF1 activity recovered into culture medium was mainly composed of three fractions of apparent MW 6-8 kDa, 9-14 kDa, and 16-18 kDa. [35S]Methionine pulse-chase experiments indicated that the radiolabeled 16-18 kDa IR-IGF1 fraction was partly converted into the 9-14 kDa and 6-8 kDa fractions. At equilibrium, 70% of the chondrocyte IR-IGF1 activity was recovered as 9- to 18-kDa forms which contained high IR-proIGF1A activity. The 6-8 kDa fraction had biochemical characteristics similar to those of the mature IGF1 peptide. Similar results were observed when 4% fetal calf serum was added to the culture. The addition of 100 ng/ml of hGH significantly and specifically increased IGF1 precursor material, which thus represented 90% of total IR-IGF1 activity. On Day 16 of the culture, when cells stopped dividing, the amount of chondrocyte IR-IGF1 was significantly lower than during cell proliferation, and hGH had no effect on this production. These data indicate that cultured chondrocytes produce more IGF1 precursors than mature IGF1 and that GH specifically stimulates biosynthesis of IGF1 precursors but not IGF1 per se. A GH-dependent biological function of IGF1 proforms in chondrocytes remains to be demonstrated.