Mutants of the monopartite geminivirus beet curly top virus have been screened for infectivity and symptom development in Nicotiana benthamiana and Beta vulgaris, for replication competence in N. benthamiana leaf discs, and for transmission by the leafhopper Circulifer tenellus. Disruption of open reading frame (ORF) V2 by the introduction of a termination codon resulted in symptomless infection of N. benthamiana associated with low levels of virus and reduced single-stranded (ss) DNA and prevented systemic infection of B. vulgaris. Reduced levels of ssDNA were produced by the mutant in N. benthamiana leaf discs, suggesting that V2 affects the synthesis or accumulation of this viral DNA form. Mutants in which ORF C2 had been truncated by the introduction of termination codons or by frame-shifting remained highly infectious and induced severe symptoms in both N. benthamiana and B. vulgaris. Similarly, a mutant containing a termination codon within ORF C3 was highly infectious and induced severe symptoms in N. benthamiana although infectivity in B. vulgaris was greatly reduced, symptoms were extremely mild, and virus levels were low. A synergistic effect of a double mutation in ORFs C2 and C3, manifested by the inability of mutants to systemically infect N. benthamiana and the production of reduced amounts of ssDNA in N. benthamiana leaf discs, suggests that both ORFs are functional in this host. A mutant containing a termination codon within the 5' terminus of ORF C4 produced severe symptoms in both N. benthamiana and B. vulgaris resembling those induced by wild-type virus. Comparison with the phenotypes of previously characterized ORF C4 mutants suggests that a conserved core sequence of this ORF is an important symptom determinant. ORF C2, C3, and C4 mutants produced virus particles and were transmitted by C. tenellus, eliminating agroinoculation as a contributory factor to the mutant phenotypes. Our results are compared with those derived from mutagenesis studies on related bipartite geminiviruses.