Deposition of extraneuronal fibrils that assemble from the 39-43 residue beta/A4 amyloid protein is one of the earliest histopathological features of Alzheimer's disease. We have used negative-stain electron microscopy, Fourier-transform infrared (FT-IR) spectroscopy, and fiber X-ray diffraction to examine the structure and properties of synthetic peptides corresponding to residues 1-40 of the beta/A4 protein of primate [Pm(1-40); human and monkey], rodent [Ro(1-40); with Arg5-->Gly, Tyr10-->Phe, and His13-->Arg], and hereditary cerebral hemorrhage with amyloidosis of the Dutch type (HCHWA-D) [Du(1-40); with Glu22-->Gln]. As controls, we examined a reverse primate sequence [Pm*(40-1)] and an extensively substituted primate peptide [C(1-40); with Glu3-->Arg, Arg5-->Glu, Asp7-->Val, His13-->Lys, Lys16-->His, Val18-->Asp, Phe19-->Ser, Phe20-->Tyr, Ser26-->Pro, Ala30-->Val, Ile31-->Ala, Met35-->norLeu, Gly38-->Ile, Val39-->Ala, and Val40-->Gly]. The assembly of these peptides was studied to understand the relationship between species-dependent amyloid formation and beta/A4 sequence and the effect of a naturally occurring point mutation of fibrillogenesis. The three N-terminal amino acid differences between Pm(1-40) and Ro(1-40) had virtually no effect on the morphology or organization of the fibrils formed by these peptides, indicating that the lack of amyloid deposits in rodent brain is not due directly to specific changes in its beta/A4 sequence. beta-Sheet and fibril formation, judged by FT-IR, was maximal within the pH range 5-8 for Pm(1-40), pH 5-10.5 for Du(1-40), and pH 2.5-8 for Ro(1-40).(ABSTRACT TRUNCATED AT 250 WORDS)