Alteration of the passive electrical properties of lymphocyte membranes induced by GM1 and GM3 glycolipids

Biochim Biophys Acta. 1992 Nov 9;1111(2):197-203. doi: 10.1016/0005-2736(92)90311-9.

Abstract

The electrical conductivity of normal human lymphocyte suspensions has been measured in the frequency range from 10 kHz to 100 MHz, where a well-pronounced conductivity dispersion occurs, caused by the surface polarization at the interface between the cell membrane and the extracellular solution. We have investigated the alteration of the passive electrical properties of the cytoplasmatic cell membrane induced by two different gangliosides (GM1 and GM3) inserted, at various concentrations, into the outer leaflet of membrane double layer. The alterations observed in the dielectric parameters (the membrane conductivity and the membrane permittivity) derived on the basis of a 'double-shell' model, result in an overall increase of the ion permeation across the membrane and an enhanced polarizability of its hydrophilic region for both gangliosides investigated. The relevance of these alterations is discussed.

Publication types

  • Comparative Study

MeSH terms

  • Cell Membrane / drug effects*
  • Cell Membrane / physiology
  • Electric Conductivity
  • G(M1) Ganglioside / pharmacology*
  • G(M3) Ganglioside / pharmacology*
  • Humans
  • Intracellular Membranes / drug effects
  • Lymphocytes / drug effects*

Substances

  • G(M3) Ganglioside
  • G(M1) Ganglioside