The development of agglomerated particles of calcium oxalate monohydrate (COM) on the semi-batch precipitation from a synthetic urine carried out at physiological conditions (37 degrees C, pH = 5.5) was studied by optical and electron scanning microscopy. COM agglomerates develop by primary and secondary agglomeration proceeding simultaneously; the latter mechanism is, however, less important than the former. Citrate ions modify slightly the COM crystal shape and inhibit primary agglomeration. Mucin particles serve as a substrate for preferential formation (nucleation) of new COM crystals. The structure of formed agglomerates closely resembles that of a certain type of COM renal calculi. A combination of primary agglomeration of crystals forming stones and nucleation of new crystals on a mucoprotein layer partially covering their surface constitutes the possible mechanism of such stone development. Experimental data support this mechanism.