Craniofacial and cardiac development relies on the proper patterning of the neural crest-derived ectomesenchyme of the pharyngeal arches, from which many craniofacial and great vessel structures arise. One of the intercellular signaling molecules that is involved in this process, endothelin-1 (ET-1), is expressed in the arch epithelium and influences arch development by binding to its cognate receptor, the endothelin A (ET(A)) receptor, found on ectomesenchymal cells. We have previously shown that absence of ET(A) signaling in ET(A)(-/-) mouse embryos disrupts neural crest cell development, resulting in craniofacial and cardiovascular defects similar in many aspects to those in mouse models of DiGeorge syndrome. These changes may reflect a cell-autonomous requirement for ET(A) signaling during crest cell development because the ET(A) receptor is an intracellular signaling molecule. However, it is also possible that some of the observed defects in ET(A)(-/-) embryos could arise from the absence of downstream signaling that act in a non-cell-autonomous manner. To address this question, we performed chimera analysis using ET(A)(-/-) embryonic stem cells. We observe that, in almost all early ET(A)(-/-) --> (+/+) chimeric embryos, ET(A)(-/-) cells are excluded from the caudoventral aspects of the pharyngeal arches, suggesting a cell-autonomous role for ET(A) signaling in crest cell migration and/or colonization. Interestingly, in the few embryos in which mutant cells do reach the ventral arch, structures derived from this area are either composed solely of wild type cells or are missing, suggesting a second cell-autonomous role for ET(A) signaling in postmigratory crest cell differentiation. In the cardiac outflow tract and great vessels, ET(A)(-/-) cells are excluded from the walls of the developing pharyngeal arch arteries, indicating that ET(A) signaling also acts cell-autonomously during cardiac neural crest cell development.