Gap junctional communication between granulosa cells seems to play a crucial role for follicular growth and atresia. Application of the double whole-cell patch-clamp- and ratiometric fura-2-techniques allowed a simultaneous measurement of gap junctional conductance ( G(j)) and cytoplasmic concentration of free Ca(2+) ([Ca(2+)](i)) in a rat granulosa cell line GFSHR-17. The voltage-dependent gating of G(j) varied for different cell pairs. One population exhibited a bell-shape dependence of G(j) on transjunctional voltage, which was strikingly similar to that of Cx43/Cx43 homotypic gap junction channels expressed in pairs of oocytes of Xenopus laevis. Within 15-20 min, gap junctional uncoupling occurred spontaneously, which was preceded by a sustained increase of [Ca(2+)](i) and accompanied by shrinkage of cellular volume. These responses to the whole-cell configuration were avoided by absence of extracellular Ca(2+), blockage of K(+) efflux, or addition of 8-bromoguanosine 3',5'-cyclic monophosphate (8-Br-cGMP) to the pipette solution. Even in the absence of extracellular Ca(2+) or blockage of K(+) efflux, formation of whole-cell configuration generated a Ca(2+) spike that could be suppressed by the presence of 8-Br-cGMP. We propose that intracellular cGMP regulates Ca(2+) release from intracellular Ca(2+) stores, which activates sustained Ca(2+) influx, K(+) efflux and cellular shrinkage. We discuss whether gap junctional conductance is directly affected by cGMP or by cellular shrinkage and whether gap junctional coupling and/or cell shrinkage is involved in the regulation of apoptotic/necrotic processes in granulosa cells.