Evolutionary pace of chromosomal polymorphism in colonizing populations of Drosophila subobscura: an evolutionary time series

Evolution. 2003 Aug;57(8):1837-45. doi: 10.1111/j.0014-3820.2003.tb00591.x.

Abstract

Biologists have long debated the speed, uniformity, and predictability of evolutionary change. However, evaluating such patterns on a geographic scale requires time-series data on replicate sets of natural populations. Drosophila subobscura has proven an ideal model system for such studies. This fly is broadly distributed in the Old World, but was introduced into both North and South America just over two decades ago and then spread rapidly. Rapid, uniform, and predictable evolution would be demonstrated if the invading flies evolved latitudinal clines that progressively converged on those of the native populations. Evolutionary geneticists quickly capitalized on this opportunity to monitor evolutionary dynamics. Just a few years after the introduction, they surveyed chromosomal inversion frequencies in both North and South America. On both continents they detected incipient latitudinal clines in chromosome inversion frequencies that almost always had the same sign with latitude as in the Old World. Thus the initial evolution of chromosomal polymorphisms on a continental scale was remarkably rapid and consistent. Here we report newer samples of inversion frequencies for the colonizing populations: the time series now spans almost one decade for North America and almost two decades for South America. Almost all inversions in the New World continue to show the same sign of frequency with latitude as in the Old World. Nevertheless, inversion clines have not consistently increased in steepness over time; nor have they consistently continued to converge on the Old World baseline. However, five arrangements in South America show directional, continentwide shifts in frequency. Overall, the initial consistency of clinal evolutionary trajectories seen in the first surveys seems not to have been maintained.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Biological Evolution*
  • Chromosome Inversion*
  • Drosophila / genetics*
  • Drosophila / physiology
  • Geography*
  • Movement / physiology*
  • Polymorphism, Genetic*
  • Time Factors