A tetrahydrobiopterin radical forms and then becomes reduced during Nomega-hydroxyarginine oxidation by nitric-oxide synthase

J Biol Chem. 2003 Nov 21;278(47):46668-73. doi: 10.1074/jbc.M307682200. Epub 2003 Sep 22.

Abstract

Nitric-oxide synthases are flavoheme enzymes that catalyze two sequential monooxygenase reactions to generate nitric oxide (NO) from l-arginine. We investigated a possible redox role for the enzyme-bound cofactor 6R-tetrahydrobiopterin (H4B) in the second reaction of NO synthesis, which is conversion of N-hydroxy-l-arginine (NOHA) to NO plus citrulline. We used stopped-flow spectroscopy and rapid-freeze EPR spectroscopy to follow heme and biopterin transformations during single-turnover NOHA oxidation reactions catalyzed by the oxygenase domain of inducible nitric-oxide synthase (iNOSoxy). Significant biopterin radical (>0.5 per heme) formed during reactions catalyzed by iNOSoxy that contained either H4B or 5-methyl-H4B. Biopterin radical formation was kinetically linked to conversion of a heme-dioxy intermediate to a heme-NO product complex. The biopterin radical then decayed within a 200-300-ms time period just prior to dissociation of NO from a ferric heme-NO product complex. Measures of final biopterin redox status showed that biopterin radical decay occurred via an enzymatic one-electron reduction process that regenerated H4B (or 5MeH4B). These results provide evidence of a dual redox function for biopterin during the NOHA oxidation reaction. The data suggest that H4B first provides an electron to a heme-dioxy intermediate, and then the H4B radical receives an electron from a downstream reaction intermediate to regenerate H4B. The first one-electron transition enables formation of the heme-based oxidant that reacts with NOHA, while the second one-electron transition is linked to formation of a ferric heme-NO product complex that can release NO from the enzyme. These redox roles are novel and expand our understanding of biopterin function in biology.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Arginine / analogs & derivatives*
  • Arginine / chemistry
  • Arginine / metabolism*
  • Biopterins / analogs & derivatives*
  • Biopterins / chemistry
  • Biopterins / metabolism*
  • Catalysis
  • Cloning, Molecular
  • Electron Spin Resonance Spectroscopy
  • Free Radicals / chemistry
  • Free Radicals / metabolism*
  • Freezing
  • Kinetics
  • Mice
  • Nitric Oxide Synthase / chemistry
  • Nitric Oxide Synthase / metabolism*
  • Oxidation-Reduction
  • Solutions

Substances

  • Free Radicals
  • Solutions
  • Biopterins
  • N(omega)-hydroxyarginine
  • Arginine
  • Nitric Oxide Synthase
  • sapropterin