The coevolution of humans with their intestinal microflora has resulted in cooperative relationships that have shaped the biology and the genomes of these symbiotic partners. Bacteroides thetaiotaomicron is one such bacterial symbiont that is a dominant member of the intestinal microbiota of humans and other mammals. The recent report of the genome sequence of B. thetaiotaomicron is the first reported for an abundant Gram-negative organism of the human colonic microbiota and, as such, provides the first glimpse on a genomic scale of the genetic arsenal used by a Gram-negative symbiont to dominate in this ecosystem. The genome has revealed large expansions of many paralogous groups of genes that encode products essential to the organism's ability to successfully compete in this environment. Most noteable is the organism's abundant machinery for utilizing a large variety of complex polysaccharides as a source of carbon and energy. The proteome also reveals the organism's extensive ability to adapt and regulate expression of its genes in response to the changing ecosystem. These factors, as well as others highlighted below, suggest an incredibly flexible and adaptable organism that is exquisitely equipped to dominate in its challenging and competitive niche.
Copyright 2003 Wiley Periodicals, Inc.