1. Although microdialysis is a widely used approach for in vivo monitoring extracellular neurotransmitter concentrations, it has been previously limited in many cases by its poor temporal resolution. It is clear that when 10-30-min sampling is performed, short-lasting changes in extracellular neurotransmitter concentrations can be overlooked. Such a low sampling rate is necessary when combining microdialysis with the conventional analytical methods like high performance liquid chromatography. 2. Since capillary electrophoresis coupled to laser-induced fluorescence detection (CE-LIFD) allows the detection of attomoles of neurotransmitters, the temporal resolution of microdialysis may be significantly improved: high sampling rates, in the range of 5 s to 1 min, have been already reported by our group and others using CE-LIFD for simultaneously analyzing catecholamines and amino acids in microdialysates. 3. The power of combining microdialyis and CE-LIFD is shown, using examples of physiological and pharmacological studies dealing with the dynamics of in vivo efflux processes and/or interactions between neurotransmitters.