Sleep bruxism (SB) is an unusual orofacial movement described as a parafunction in dentistry and as a parasomnia in sleep medicine. Since several peripheral influences could be involved in sleep-wake regulation and the genesis of rhythmic jaw movements, the authors have reviewed the relevant literature to facilitate understanding of mechanisms possibly involved in SB genesis. Various animal and human studies indicate that during either wakefulness or anesthesia, orofacial sensory inputs (e.g., from periodontium, mucosa, and muscle) could influence jaw muscle activity. However, the role of these sensory inputs in jaw motor activity during sleep is unclear. Interestingly, during sleep, the jaw is usually open due to motor suppression; tooth contact most likely occurs in association with sleep arousal. Recent physiologic evidence supports an association between sleep arousal and SB; a sequential change from autonomic (cardiac) and brain cortical activities precede SB-related jaw motor activity. This suggests that the central and/or autonomic nervous systems, rather than peripheral sensory factors, have a dominant role in SB genesis. However, some peripheral sensory factors may exert an influence on SB through their interaction with sleep-wake mechanisms. The intent of this review is to integrate various physiologic concepts in order to better understand the mechanisms underlying the genesis of SB.