The DNA-binding protein Ssh10b from the hyperthermophilic archaeon Sulfolobus shibatae is a member of the Sac10b family, which has been speculated to be involved in the organization of the chromosomal DNA in Archaea. Ssh10b affects the DNA topology in a temperature dependent fashion that has not been reported for any other DNA-binding proteins. Heteronuclear NMR and site-directed mutagenesis were used to analyze the structural basis of the temperature-dependent Ssh10b-DNA interaction. The data analysis indicates that two forms of Ssh10b homodimers co-exist in solution, and the slow cis-trans isomerization of the Leu61-Pro62 peptide bond is the key factor responsible for the conformational heterogeneity of the Ssh10b homodimer. The T-form dimer, with the Leu61-Pro62 bond in the trans conformation, dominates at higher temperature, whereas population of the C-form dimer, with the bond in the cis conformation, increases on decreasing the temperature. The two forms of the Ssh10b dimer show the same DNA binding site but have different conformational features that are responsible for the temperature-dependent nature of the Ssh10b-DNA interaction.