The high number of quaternary structures observed for lectins highlights the important role of these oligomeric assemblies during carbohydrate recognition events. Although a large diversity in the mode of association of lectin subunits is frequently observed, the oligomeric assemblies of plant lectins display small variations within a single family. The crystal structure of the mannose-binding jacalin-related lectin from Calystegia sepium (Calsepa) has been determined at 1.37-A resolution. Calsepa exhibits the same beta-prism fold as identified previously for other members of the family, but the shape and the hydrophobic character of its carbohydrate-binding site is unlike that of other members, consistent with surface plasmon resonance analysis showing a preference for methylated sugars. Calsepa reveals a novel dimeric assembly markedly dissimilar to those described earlier for Heltuba and jacalin but mimics the canonical 12-stranded beta-sandwich dimer found in legume lectins. The present structure exemplifies the adaptability of the beta-prism building block in the evolution of plant lectins and highlights the biological role of these quaternary structures for carbohydrate recognition.