The development of new materials for tissue engineering of skin substitutes requires an increasing knowledge of their interactions with human skin cells. Since carbohydrate recognition is involved in numerous biologic processes, including skin regeneration, the aim of this study was to identify sugar receptors expressed at the surface of human dermic and epidermic cells. Binding of fluorescent sugar-polyhydroxyethylacrylamide derivatives was analyzed by flow cytofluorimetry on cultured human skin fibroblasts, keratinocytes, and melanocytes. We observed that these three cell types express a membrane receptor specific for GlcNAc6S. Since the polysaccharide heparin contains this sugar moiety, we further investigated the interactions of heparin with skin cells. We analyzed the in vitro cell binding and ex vivo diffusion with the Franz cell of heparin and of two other polysaccharides of similar molecular weight, dextran and chondroitin sulfate. We found evidence of the preferential binding of heparin on keratinocytes and its high transcutaneous penetration of skin. Altogether, our results describe the affinity of heparin for human skin cells and suggest it may be an excellent candidate for use in the skin delivery of drugs or cosmetics and also as an active component in engineered skin.
Copyright 2003 Wiley Periodicals, Inc.