Bone mineral change during experimental heating: an X-ray scattering investigation

Biomaterials. 2003 Dec;24(28):5091-7. doi: 10.1016/s0142-9612(03)00427-7.

Abstract

The effects of heating and burning on bone mineral have previously been studied using techniques such as X-ray diffraction (XRD) with the aim of discerning a characteristic signature of crystal change. This would enable a better understanding of alteration to bone mineral during heating, which would in turn impact on the preparation and use of natural bone hydroxyapatite as a biomaterial resource. In addition, this knowledge could prove invaluable in the investigation of burned human remains from forensic and archaeological contexts in cremation and funerary practice. Here we describe a complementary method, small-angle X-ray scattering (SAXS), to determine more accurately the changes to bone crystallite size and shape during an experimental heating regimen. Samples were subjected to controlled heating at 500 degrees C, 700 degrees C, or 900 degrees C for 15 or 45 min. Our results show bone crystallites begin to alter in the first 15 min of heating to 500 degrees C or above. They then appear to stabilise to a temperature-specific thickness and shape with prolonged heating. While the samples heated to lower temperatures or for shorter periods produce XRD traces showing little alteration to the apatite, corresponding information obtained from SAXS shows an early, subtle change in crystal parameters.

Publication types

  • Evaluation Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bone Density* / radiation effects*
  • Bone and Bones / chemistry*
  • Bone and Bones / radiation effects*
  • Crystallization / methods*
  • Durapatite / analysis
  • Durapatite / chemistry*
  • Durapatite / radiation effects*
  • Hot Temperature*
  • In Vitro Techniques
  • Molecular Conformation
  • Sheep
  • Temperature
  • X-Ray Diffraction / methods*

Substances

  • Durapatite