The complete repertoire of cellular and molecular determinants that influence graft-vs-host disease (GVHD) is not known. Using a well-established murine model of GVHD (B6-->bm12 mice), we sought to elucidate the role of the donor non-T cell compartment and molecular determinants therein in the pathogenesis of GVHD. In this model the acute GVHD-inducing effects of purified B6 wild-type (wt) CD4(+) T cells was inhibited by wt non-T cells in a dose-dependent manner. Paradoxically, unlike the chronic GVHD phenotype observed in bm12 mice transplanted with B6wt unfractionated splenocytes, bm12 recipients of B6ccr2-null unfractionated splenocytes developed acute GVHD and died of IFN-gamma-mediated bone marrow aplasia. This switch from chronic to acute GVHD was associated with increased target organ infiltration of activated CD4(+) T cells as well as enhanced expression of Th1/Th2 cytokines, chemokines, and the antiapoptotic factor bfl1. In vitro, ccr2(-/-) CD4(+) T cells in unfractionated splenocytes underwent significantly less activation-induced cell death than B6wt CD4(+) T cells, providing another potential mechanistic basis along with enhanced expression of bfl1 for the increased numbers of activated T cells in target organs of B6ccr2(-/-) splenocyte-->bm12 mice. Collectively, these findings have important clinical implications, as they implicate the donor non-T cell compartment as a critical regulator of GVHD and suggest that ccr2 expression in this cellular compartment may be an important molecular determinant of activation-induced cell death and GVHD pathogenesis.