The technique of single-particle electron cryomicroscopy is currently making possible the 3D structure determination of large macromolecular complexes at constantly increasing levels of resolution. Work at resolution now attainable requires many thousands of individual images to be processed computationally. The most time-consuming step of the image-processing procedure is usually the iterative alignment of individual particle images against a set of reference images derived from a preliminary 3-D structure. We have developed an improved multireference alignment procedure based on interpolated cross-correlation images (corrims) that results in an approximately 8-fold acceleration of the iterative alignment steps. These corrims can be used to restrict the number of image-alignment calculations by narrowing down the set of reference images. Another improvement in alignment speed has been achieved by optimising the software and its implementation on many parallel processors. This new corrim-based refinement has been found to work well with two different alignment algorithms, the commonly used "fast alignment by separate translational/rotational searches" and "exhaustive alignment by polar coordinates."