One of seven poor metabolizers of coumarin found in Thai subjects was previously genotyped as heterozygote for the CYP2A6*4 (whole deletion) and CYP2A6*9. Thus, we aimed to investigate the relationship between the genetic polymorphism in the TATA box of the CYP2A6 gene (CYP2A6*9), expression levels of CYP2A6 mRNA and coumarin 7-hydroxylase activities in human livers. Levels of CYP2A6 mRNA were quantified by real-time quantitative reverse transcriptase-polymerase chain reaction. The mean expression levels of CYP2A6 mRNA in individuals with CYP2A6*1/*4, CYP2A6*1/*9 and CYP2A6*4/*9 were 58%, 71% and 21% of the individuals genotyped as CYP2A6*1/*1, respectively. The mean in-vitro coumarin 7-hydroxylase activities in subjects carrying CYP2A6*1/*4, CYP2A6*1/*9 and CYP2A6*4/*9 were 41%, 71% and 12%, respectively, compared to those of the subjects judged as wild-type. Vmax values for coumarin 7-hydroxylation in the liver microsomes from human subjects with genotypes of CYP2A6*1/*1, CYP2A6*1/*4, CYP2A6*1/*9 and CYP2A6*4/*9 were 0.58, 0.26, 0.44 and 0.13 nmol/min/nmol total P450, respectively. CYP2A6 protein levels in human liver microsomes with the CYP2A6*4 and the CYP2A6*9 alleles were markedly decreased. These results suggest that the genetic polymorphism in the promoter region of the CYP2A6 gene (CYP2A6*9) reduced the expression levels of CYP2A6 mRNA and protein in human livers, resulting in the decrease of coumarin 7-hydroxylase activities. Individuals judged as CYP2A6*4/*9 were expected to be poor metabolizers, having extremely low activity of CYP2A6.
Copyright 2003 Lippincott Williams & Wilkins