Characterization of novel recombinant HIV-1 genomes using the branching index

Virology. 2003 Nov 10;316(1):116-25. doi: 10.1016/j.virol.2003.08.004.

Abstract

We have characterized six novel genomes of human immunodeficiency virus type 1 (HIV-1) sampled from individuals infected in Uganda and former Zaire. Four isolates (SE6954, SE8603, UG035, and UG266) had clear recombination patterns that included subtypes A1, D and C. The two remaining strains (SE8646 and SE9010) also appeared to be recombinant but had a more complex pattern. To facilitate the classification of these two genomes we developed a metric, the branching index, for characterization of "problematic" sequence fragments that associate to a subtype cluster with a high bootstrap value but are only distantly related to the reference sequences. The branching index is able to signal when parental representatives may be missing and a subtype classification thus is not meaningful. Several fragments of SE8646 and SE9010 had a branching index below the subtype defining cutoff value (0.55) and, therefore, these genomes could not be unequivocally classified. The branching index, with a cutoff value defined from analyses of HIV-1 reference sequences, may be a useful approach not only for more conservative classifications of HIV-1 subtypes but also for analyzing relationships among other types of sequences.

Publication types

  • Evaluation Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Evolution, Molecular*
  • Genome, Viral*
  • HIV Infections / virology
  • HIV-1 / classification*
  • HIV-1 / genetics
  • Humans
  • Phylogeny
  • Recombination, Genetic*
  • Reference Standards