Nanomorphology of polymer frameworks and their role as templates for generating size-controlled metal nanoclusters

Chemistry. 2003 Nov 7;9(21):5292-6. doi: 10.1002/chem.200304965.

Abstract

The microporous (gel-type) functional resin co-poly-N,N-dimethylacrylamide (DMAA) (88 % mol)/methacrylic acid (MAA) (8 % mol)/N,N'-methylenebisacrylamide (MBAA) (4 % mol) (MPIF(H)) is employed as the hosting framework for the production of resin-supported Pd(0) nanoclusters. The obtained composite MPIF(-)Na(+)/Pd(0) is prepared upon reducing, in ethanol, MPIF(-)Pd(2+) (0.5), obtained upon previous homogeneous dispersion of "Pd(2+)" inside the resin particles (XRMA control) through ion-exchange. Metal nanoclusters appear to be size-controlled (2.0+/-0.2 nm) and are seen to reasonably fit the predominant resin "nanopores" diameter, determined in ethanol (3.2 nm) by means of inverse steric exclusion chromatography (ISEC).