Variation of mechanical properties along the length of the aorta in C57bl/6 mice

Am J Physiol Heart Circ Physiol. 2003 Dec;285(6):H2614-22. doi: 10.1152/ajpheart.00567.2003.

Abstract

The objective of the present study is to obtain a systematic set of data on the mechanical properties along the entire length of the mouse aorta. The ascending aorta of seven mice was cannulated near the aortic valve, and the aorta was preconditioned with several cyclic changes in pressure. The perfusion pressure was then increased in 30-mmHg increments from 0 to 150 mmHg. Cab-O-Sil, colloidal silica, was mixed into the perfusate to prevent flow through the microvessels and hence attain zero-flow distensions. Our results show that the residual circumferential strain leads to a uniformity of transmural strain of the aorta in the loaded state along the entire length of the aorta. This uniformity is attained in the range of 60-120 mmHg. At pressures <60 mmHg, the outer strain is greater than the inner strain, whereas at pressures >120 mmHg, the converse is true. Furthermore, we found that the circumferential and longitudinal stress-strain relationships are linear in the pressure range of 30-120 mmHg. Finally, the circumferential modulus is greatest (most rigid) near the diaphragm, and the majority of volume compliance (85%) is in the thoracic compared with the abdominal aorta. These findings are important for an understanding of the hemodynamics of the cardiovascular system of the normal mouse and will serve as a reference state for the study of various diseases in knock-in and knock-out models of this species.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Aorta, Thoracic / physiology*
  • Blood Pressure / physiology
  • Elasticity
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Models, Cardiovascular*
  • Regression Analysis
  • Stress, Mechanical