Aldolase (E.C. 4.1.2.13), a homotetrameric protein encoded by the ALDOA gene, converts fructose-1,6-bisphosphate to dihydroxyacetone phosphate and glyceraldehyde-3-phosphate. Three isozymes are encoded by distinct genes. The sole aldolase present in red blood cells and skeletal muscle is the A isozyme. We report here the case of a girl of Sicilian descent with aldolase A deficiency. Clinical manifestations included transfusion-dependent anemia until splenectomy at age 3 and increasing muscle weakness, with death at age 4 associated with rhabdomyolysis and hyperkalemia. Sequence analysis of the ALDOA coding regions revealed 2 novel heterozygous ALDOA mutations in conserved regions of the protein. The paternal allele encoded a nonsense mutation, Arg303X, in the enzyme-active site. The maternal allele encoded a missense mutation, Cys338Tyr, predicted to cause enzyme instability. This is the most severely affected patient reported to date and only the second with both rhabdomyolysis and hemolysis.